Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
4.
Epidemiol Infect ; 150: e143, 2022 07 12.
Article in English | MEDLINE | ID: covidwho-1931273

ABSTRACT

In October 2021, the WHO published an ambitious strategy to ensure that all countries had vaccinated 40% of their population by the end of 2021 and 70% by mid-2022. The end of June 2022 marks 18 months of implementation of coronavirus disease 2019 (COVID-19) vaccination in the African region and provides an opportunity to look back and think ahead about COVID-19 vaccine set targets, demand and delivery strategies. As of 26 June 2022 two countries in the WHO African region have achieved this target (Mauritius and Seychelles) and seven are on track, having vaccinated between 40% and 69% of their population. By the 26 June 2022, seven among the 20 countries that had less than 10% of people fully vaccinated at the end of January 2022, have surpassed 15% of people fully vaccinated at the end of June 2022. This includes five targeted countries, which are being supported by the WHO Regional Office for Africa through the Multi-Partners' Country Support Team Initiative. As we enter the second semester of 2022, a window of opportunity has opened to provide new impetus to COVID-19 vaccination rollout in the African region guided by the four principles: Scale-up, Transition, Consolidation and Communication. Member States need to build on progress made to ensure that this impetus is not lost and that the African region does not remain the least vaccinated global region, as economies open up and world priorities change.


Subject(s)
COVID-19 , Africa/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Vaccination , World Health Organization
5.
Lancet Glob Health ; 10(8): e1099-e1114, 2022 08.
Article in English | MEDLINE | ID: covidwho-1867952

ABSTRACT

BACKGROUND: COVID-19 has affected the African region in many ways. We aimed to generate robust information on the transmission dynamics of COVID-19 in this region since the beginning of the pandemic and throughout 2022. METHODS: For each of the 47 countries of the WHO African region, we consolidated COVID-19 data from reported infections and deaths (from WHO statistics); published literature on socioecological, biophysical, and public health interventions; and immunity status and variants of concern, to build a dynamic and comprehensive picture of COVID-19 burden. The model is consolidated through a partially observed Markov decision process, with a Fourier series to produce observed patterns over time based on the SEIRD (denoting susceptible, exposed, infected, recovered, and dead) modelling framework. The model was set up to run weekly, by country, from the date the first infection was reported in each country until Dec 31, 2021. New variants were introduced into the model based on sequenced data reported by countries. The models were then extrapolated until the end of 2022 and included three scenarios based on possible new variants with varying transmissibility, severity, or immunogenicity. FINDINGS: Between Jan 1, 2020, and Dec 31, 2021, our model estimates the number of SARS-CoV-2 infections in the African region to be 505·6 million (95% CI 476·0-536·2), inferring that only 1·4% (one in 71) of SARS-CoV-2 infections in the region were reported. Deaths are estimated at 439 500 (95% CI 344 374-574 785), with 35·3% (one in three) of these reported as COVID-19-related deaths. Although the number of infections were similar between 2020 and 2021, 81% of the deaths were in 2021. 52·3% (95% CI 43·5-95·2) of the region's population is estimated to have some SARS-CoV-2 immunity, given vaccination coverage of 14·7% as of Dec 31, 2021. By the end of 2022, we estimate that infections will remain high, at around 166·2 million (95% CI 157·5-174·9) infections, but deaths will substantially reduce to 22 563 (14 970-38 831). INTERPRETATION: The African region is estimated to have had a similar number of COVID-19 infections to that of the rest of the world, but with fewer deaths. Our model suggests that the current approach to SARS-CoV-2 testing is missing most infections. These results are consistent with findings from representative seroprevalence studies. There is, therefore, a need for surveillance of hospitalisations, comorbidities, and the emergence of new variants of concern, and scale-up of representative seroprevalence studies, as core response strategies. FUNDING: None.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19 Testing , Humans , Population Growth , SARS-CoV-2 , Seroepidemiologic Studies , World Health Organization
6.
PLoS One ; 17(2): e0261904, 2022.
Article in English | MEDLINE | ID: covidwho-1674004

ABSTRACT

The need for resilient health systems is recognized as important for the attainment of health outcomes, given the current shocks to health services. Resilience has been defined as the capacity to "prepare and effectively respond to crises; maintain core functions; and, informed by lessons learnt, reorganize if conditions require it". There is however a recognized dichotomy between its conceptualization in literature, and its application in practice. We propose two mutually reinforcing categories of resilience, representing resilience targeted at potentially known shocks, and the inherent health system resilience, needed to respond to unpredictable shock events. We determined capacities for each of these categories, and explored this methodological proposition by computing country-specific scores against each capacity, for the 47 Member States of the WHO African Region. We assessed face validity of the computed index, to ensure derived values were representative of the different elements of resilience, and were predictive of health outcomes, and computed bias-corrected non-parametric confidence intervals of the emergency preparedness and response (EPR) and inherent system resilience (ISR) sub-indices, as well as the overall resilience index, using 1000 bootstrap replicates. We also explored the internal consistency and scale reliability of the index, by calculating Cronbach alphas for the various proposed capacities and their corresponding attributes. We computed overall resilience to be 48.4 out of a possible 100 in the 47 assessed countries, with generally lower levels of ISR. For ISR, the capacities were weakest for transformation capacity, followed by mobilization of resources, awareness of own capacities, self-regulation and finally diversity of services respectively. This paper aims to contribute to the growing body of empirical evidence on health systems and service resilience, which is of great importance to the functionality and performance of health systems, particularly in the context of COVID-19. It provides a methodological reflection for monitoring health system resilience, revealing areas of improvement in the provision of essential health services during shock events, and builds a case for the need for mechanisms, at country level, that address both specific and non-specific shocks to the health system, ultimately for the attainment of improved health outcomes.


Subject(s)
COVID-19/prevention & control , Delivery of Health Care/standards , Disaster Planning/methods , Health Resources/statistics & numerical data , Health Services Needs and Demand , Medical Assistance/standards , Resilience, Psychological , Africa/epidemiology , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Humans , Reproducibility of Results , SARS-CoV-2/isolation & purification , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL